Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Front Neurosci ; 18: 1295615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370436

RESUMO

Background: The investigation of mindfulness meditation practice, classically divided into focused attention meditation (FAM), and open monitoring meditation (OMM) styles, has seen a long tradition of theoretical, affective, neurophysiological and clinical studies. In particular, the high temporal resolution of magnetoencephalography (MEG) or electroencephalography (EEG) has been exploited to fill the gap between the personal experience of meditation practice and its neural correlates. Mounting evidence, in fact, shows that human brain activity is highly dynamic, transiting between different brain states (microstates). In this study, we aimed at exploring MEG microstates at source-level during FAM, OMM and in the resting state, as well as the complexity and criticality of dynamic transitions between microstates. Methods: Ten right-handed Theravada Buddhist monks with a meditative expertise of minimum 2,265 h participated in the experiment. MEG data were acquired during a randomized block design task (6 min FAM, 6 min OMM, with each meditative block preceded and followed by 3 min resting state). Source reconstruction was performed using eLORETA on individual cortical space, and then parcellated according to the Human Connect Project atlas. Microstate analysis was then applied to parcel level signals in order to derive microstate topographies and indices. In addition, from microstate sequences, the Hurst exponent and the Lempel-Ziv complexity (LZC) were computed. Results: Our results show that the coverage and occurrence of specific microstates are modulated either by being in a meditative state or by performing a specific meditation style. Hurst exponent values in both meditation conditions are reduced with respect to the value observed during rest, LZC shows significant differences between OMM, FAM, and REST, with a progressive increase from REST to FAM to OMM. Discussion: Importantly, we report changes in brain criticality indices during meditation and between meditation styles, in line with a state-like effect of meditation on cognitive performance. In line with previous reports, we suggest that the change in cognitive state experienced in meditation is paralleled by a shift with respect to critical points in brain dynamics.

2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38186005

RESUMO

Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gamma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.


Assuntos
Memória de Curto Prazo , Receptores de GABA-A , Humanos , Memória de Curto Prazo/fisiologia , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico , Encéfalo/fisiologia
3.
PLoS One ; 18(11): e0290158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910557

RESUMO

Videogames are emerging as a promising experimental paradigm in neuroimaging. Acquiring gameplay in a scanner remains challenging due to the lack of a scanner-compatible videogame controller that provides a similar experience to standard, commercial devices. In this paper, we introduce a videogame controller designed for use in the functional magnetic resonance imaging as well as magnetoencephalography. The controller is made exclusively of 3D-printed and commercially available parts. We evaluated the quality of our controller by comparing it to a non-MRI compatible controller that was kept outside the scanner. The comparison of response latencies showed reliable button press accuracies of adequate precision. Comparison of the subjects' motion during fMRI recordings of various tasks showed that the use of our controller did not increase the amount of motion produced compared to a regular MR compatible button press box. Motion levels during an ecological videogame task were of moderate amplitude. In addition, we found that the controller only had marginal effect on temporal SNR in fMRI, as well as on covariance between sensors in MEG, as expected due to the use of non-magnetic building materials. Finally, the reproducibility of the controller was demonstrated by having team members who were not involved in the design build a reproduction using only the documentation. This new videogame controller opens new avenues for ecological tasks in fMRI, including challenging videogames and more generally tasks with complex responses. The detailed controller documentation and build instructions are released under an Open Source Hardware license to increase accessibility, and reproducibility and enable the neuroimaging research community to improve or modify the controller for future experiments.


Assuntos
Magnetoencefalografia , Jogos de Vídeo , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Neuroimagem
4.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37994368

RESUMO

Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the resting-state electroencephalogram of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting consciousness independent of behavior. All participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., enabling an experimental dissociation between unresponsiveness and unconsciousness. We estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that states of unconsciousness were characterized by a distancing from both the edge of activity propagation and the edge of chaos. We were then able to predict individual subjects' PCI (i.e., PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and criticality and provide further evidence for the role of criticality in the emergence of consciousness.

5.
Neuroimage ; 281: 120356, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703939

RESUMO

The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipeline, such as the choice of a source estimation algorithm, a connectivity metric and a cortical parcellation, to name but a few. Recent studies have emphasized the importance of selecting the regularization parameter in minimum norm estimates with caution, as variations in its value can result in significant differences in connectivity estimates. In particular, the amount of regularization that is optimal for MEG source estimation can actually be suboptimal for coherence-based MEG connectivity analysis. In this study, we expand upon previous work by examining a broader range of commonly used connectivity metrics, including the imaginary part of coherence, corrected imaginary part of Phase Locking Value, and weighted Phase Lag Index, within a larger and more realistic simulation scenario. Our results show that the best estimate of connectivity is achieved using a regularization parameter that is 1 or 2 orders of magnitude smaller than the one that yields the best source estimation. This remarkable difference may imply that previous work assessing source-space connectivity using minimum-norm may have benefited from using less regularization, as this may have helped reduce false positives. Importantly, we provide the code for MEG data simulation and analysis, offering the research community a valuable open source tool for informed selections of the regularization parameter when using minimum-norm for source space connectivity analyses.

6.
Sci Rep ; 13(1): 15811, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737222

RESUMO

Self-induced cognitive trance (SICT) is a voluntary non-ordinary state of consciousness characterized by a lucid yet narrowed awareness of the external surroundings. It involves a hyper-focused immersive experience of flow, expanded inner imagery, modified somatosensory processing, and an altered perception of self and time. SICT is gaining attention due to its potential clinical applications. Similar states of non-ordinary state of consciousness, such as meditation, hypnosis, and psychedelic experiences, have been reported to induce changes in the autonomic nervous system. However, the functioning of the autonomic nervous system during SICT remains poorly understood. In this study, we aimed to investigate the impact of SICT on the cardiac and respiratory signals of 25 participants proficient in SICT. To accomplish this, we measured various metrics of heart rate variability (HRV) and respiration rate variability (RRV) in three conditions: resting state, SICT, and a mental imagery task. Subsequently, we employed a machine learning framework utilizing a linear discriminant analysis classifier and a cross-validation scheme to identify the features that exhibited the best discrimination between these three conditions. The results revealed that during SICT, participants experienced an increased heart rate and a decreased level of high-frequency (HF) HRV compared to the control conditions. Additionally, specific increases in respiratory amplitude, phase ratio, and RRV were observed during SICT in comparison to the other conditions. These findings suggest that SICT is associated with a reduction in parasympathetic activity, indicative of a hyperarousal state of the autonomic nervous system during SICT.


Assuntos
Estado de Consciência , Alucinógenos , Humanos , Sistema Nervoso Autônomo , Benchmarking , Análise Discriminante
7.
Neuroimage ; 277: 120253, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385392

RESUMO

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed. With the neuroscience ML user in mind, this paper provides a didactic assessment of the class imbalance problem and illustrates its impact through systematic manipulation of data imbalance ratios in (i) simulated data and (ii) brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Our results illustrate how the widely-used Accuracy (Acc) metric, which measures the overall proportion of successful predictions, yields misleadingly high performances, as class imbalance increases. Because Acc weights the per-class ratios of correct predictions proportionally to class size, it largely disregards the performance on the minority class. A binary classification model that learns to systematically vote for the majority class will yield an artificially high decoding accuracy that directly reflects the imbalance between the two classes, rather than any genuine generalizable ability to discriminate between them. We show that other evaluation metrics such as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), and the less common Balanced Accuracy (BAcc) metric - defined as the arithmetic mean between sensitivity and specificity, provide more reliable performance evaluations for imbalanced data. Our findings also highlight the robustness of Random Forest (RF), and the benefits of using stratified cross-validation and hyperprameter optimization to tackle data imbalance. Critically, for neuroscience ML applications that seek to minimize overall classification error, we recommend the routine use of BAcc, which in the specific case of balanced data is equivalent to using standard Acc, and readily extends to multi-class settings. Importantly, we present a list of recommendations for dealing with imbalanced data, as well as open-source code to allow the neuroscience community to replicate and extend our observations and explore alternative approaches to coping with imbalanced data.


Assuntos
Benchmarking , Encéfalo , Humanos , Magnetoencefalografia , Aprendizado de Máquina , Eletroencefalografia , Algoritmos
8.
J Cogn Neurosci ; 35(8): 1279-1300, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262361

RESUMO

Visuospatial attention is not a monolithic process and can be divided into different functional systems. In this framework, exogenous attention reflects the involuntary orienting of attention resources following a salient event, whereas endogenous attention corresponds to voluntary orienting based on the goals and intentions of individuals. Previous work shows that these attention processes map onto distinct functional systems, yet evidence suggests that they are not fully independent. In the current work, we investigated the differential and overlapping effects of exogenous and endogenous attention on visual processing. We combined spatial cueing of visuospatial attention, EEG, and multivariate pattern analysis to examine where and when the effects of exogenous and endogenous attention were maximally different and maximally similar. Critically, multivariate pattern analysis provided new insights by examining whether classifiers trained to decode the cueing effect for one attention process (e.g., exogenous attention) can successfully decode the cueing effect for the other attention process (e.g., endogenous attention). These analyses uncovered differential and overlapping effects between exogenous and endogenous attention. Next, we combined principal component analyses, single-trial ERPs, and mediation analysis to determine whether these effects facilitate perception, as indexed by the behavioral spatial cueing effects of exogenous and endogenous attention. This approach revealed that three EEG components shape the cueing effects of exogenous and endogenous attention at various times after target onset. Altogether, our study provides a comprehensive account about how overlapping and differential processes of endogenous and exogenous relate to perceptual facilitation in the context of visuospatial attention.


Assuntos
Atenção , Percepção Visual , Humanos , Sinais (Psicologia) , Potenciais Evocados , Estimulação Luminosa
9.
J Neurosci ; 43(24): 4487-4497, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37160361

RESUMO

When we fixate an object, visual information is continuously received on the retina. Several studies observed behavioral oscillations in perceptual sensitivity across such stimulus time, and these fluctuations have been linked to brain oscillations. However, whether specific brain areas show oscillations across stimulus time (i.e., different time points of the stimulus being more or less processed, in a rhythmic fashion) has not been investigated. Here, we revealed random areas of face images at random moments across time and recorded the brain activity of male and female human participants using MEG while they performed two recognition tasks. This allowed us to quantify how each snapshot of visual information coming from the stimulus is processed across time and across the brain. Oscillations across stimulus time (rhythmic sampling) were mostly visible in early visual areas, at theta, alpha, and low beta frequencies. We also found that they contributed to brain activity more than previously investigated rhythmic processing (oscillations in the processing of a single snapshot of visual information). Nonrhythmic sampling was also visible at later latencies across the visual cortex, either in the form of a transient processing of early stimulus time points or of a sustained processing of the whole stimulus. Our results suggest that successive cycles of ongoing brain oscillations process stimulus information incoming at successive moments. Together, these results advance our understanding of the oscillatory neural dynamics associated with visual processing and show the importance of considering the temporal dimension of stimuli when studying visual recognition.SIGNIFICANCE STATEMENT Several behavioral studies have observed oscillations in perceptual sensitivity over the duration of stimulus presentation, and these fluctuations have been linked to brain oscillations. However, oscillations across stimulus time in the brain have not been studied. Here, we developed an MEG paradigm to quantify how visual information received at each moment during fixation is processed through time and across the brain. We showed that different snapshots of a stimulus are distinctly processed in many brain areas and that these fluctuations are oscillatory in early visual areas. Oscillations across stimulus time were more prevalent than previously studied oscillations across processing time. These results increase our understanding of how neural oscillations interact with the visual processing of temporal stimuli.


Assuntos
Encéfalo , Percepção Visual , Humanos , Masculino , Feminino , Reconhecimento Psicológico , Magnetoencefalografia/métodos , Estimulação Luminosa/métodos
10.
Neuroimage ; 275: 120154, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209758

RESUMO

In the human electroencephalogram (EEG), oscillatory power co-exist with non-oscillatory, aperiodic activity. Although EEG analysis has traditionally focused exclusively on oscillatory power, recent investigations have shown that the aperiodic EEG component can distinguish conscious wakefulness from sleep and anesthetic-induced unconsciousness. This study investigates the aperiodic EEG component of individuals in a disorder of consciousness (DOC); how it changes in response to exposure to anesthesia; and how it relates to the brain's information richness and criticality. High-density EEG was recorded from 43 individuals in a DOC, with 16 of these individuals undergoing a protocol of propofol anesthesia. The aperiodic component was defined by the spectral slope of the power spectral density. Our results demonstrate that the EEG aperiodic component is more informative about the participants' level of consciousness than the oscillatory component, especially for patients that suffered from a stroke. Importantly, the pharmacologically induced change in the spectral slope from 30 to 45 Hz positively correlated with individual's pre-anesthetic level of consciousness. The pharmacologically induced loss of information-richness and criticality was associated with individual's pre-anesthetic aperiodic component. During exposure to anesthesia, the aperiodic component distinguished individuals with DOC, according to their 3-month recovery status. The aperiodic EEG component has been historically neglected; this research highlights the necessity of considering this measure for the assessment of individuals in DOC and future research that seeks to understand the neurophysiological underpinnings of consciousness.


Assuntos
Anestesia , Anestésicos , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/induzido quimicamente , Eletroencefalografia , Encéfalo/fisiologia
11.
Trends Neurosci ; 45(11): 820-837, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36096888

RESUMO

Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.


Assuntos
Encéfalo , Cognição , Humanos
12.
iScience ; 25(10): 105103, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164655

RESUMO

Creativity is a highly valued and beneficial skill that empirical research typically probes using "divergent thinking" (DT) tasks such as problem solving and novel idea generation. Here, in contrast, we examine the perceptual aspect of creativity by asking whether creative individuals are more likely to perceive recognizable forms in ambiguous stimuli -a phenomenon known as pareidolia. To this end, we designed a visual task in which participants were asked to identify as many recognizable forms as possible in cloud-like fractal images. We found that pareidolic perceptions arise more often and more rapidly in highly creative individuals. Furthermore, high-creatives report pareidolia across a broader range of image contrasts and fractal dimensions than do low creatives. These results extend the established body of work on DT by introducing divergent perception as a complementary manifestation of the creative mind, thus clarifying the perception-creation link while opening new paths for studying creative behavior in humans.

13.
Front Neural Circuits ; 16: 630621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418839

RESUMO

Schizophrenia has a complex etiology and symptomatology that is difficult to untangle. After decades of research, important advancements toward a central biomarker are still lacking. One of the missing pieces is a better understanding of how non-linear neural dynamics are altered in this patient population. In this study, the resting-state neuromagnetic signals of schizophrenia patients and healthy controls were analyzed in the framework of criticality. When biological systems like the brain are in a state of criticality, they are thought to be functioning at maximum efficiency (e.g., optimal communication and storage of information) and with maximum adaptability to incoming information. Here, we assessed the self-similarity and multifractality of resting-state brain signals recorded with magnetoencephalography in patients with schizophrenia patients and in matched controls. Schizophrenia patients had similar, although attenuated, patterns of self-similarity and multifractality values. Statistical tests showed that patients had higher values of self-similarity than controls in fronto-temporal regions, indicative of more regularity and memory in the signal. In contrast, patients had less multifractality than controls in the parietal and occipital regions, indicative of less diverse singularities and reduced variability in the signal. In addition, supervised machine-learning, based on logistic regression, successfully discriminated the two groups using measures of self-similarity and multifractality as features. Our results provide new insights into the baseline cognitive functioning of schizophrenia patients by identifying key alterations of criticality properties in their resting-state brain data.


Assuntos
Magnetoencefalografia , Esquizofrenia , Encéfalo , Mapeamento Encefálico , Cognição , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos
14.
Neuroimage ; 257: 119056, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283287

RESUMO

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.


Assuntos
Eletroencefalografia , Humanos
15.
Sci Rep ; 12(1): 476, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013361

RESUMO

Verbal fluency (VF) is a heterogeneous cognitive function that requires executive as well as language abilities. The purpose of this study was to elucidate the specificity of the resting state MEG correlates of the executive and language components. To this end, we administered a VF test, another verbal test (Vocabulary), and another executive test (Trail Making Test), and we recorded 5-min eyes-open resting-state MEG data in 28 healthy participants. We used source-reconstructed spectral power estimates to compute correlation/anticorrelation MEG clusters with the performance at each test, as well as with the advantage in performance between tests, across individuals using cluster-level statistics in the standard frequency bands. By obtaining conjunction clusters between verbal fluency scores and factor loading obtained for verbal fluency and each of the two other tests, we showed a core of slow clusters (delta to beta) localized in the right hemisphere, in adjacent parts of the premotor, pre-central and post-central cortex in the mid-lateral regions related to executive monitoring. We also found slow parietal clusters bilaterally and a cluster in the gamma 2 and 3 bands in the left inferior frontal gyrus likely associated with phonological processing involved in verbal fluency.


Assuntos
Encéfalo/fisiologia , Idioma , Comportamento Verbal , Adulto , Cognição , Feminino , Humanos , Magnetoencefalografia , Masculino , Testes Neuropsicológicos , Vocabulário , Adulto Jovem
16.
Neuroimage ; 244: 118577, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525395

RESUMO

Neural oscillations contribute to speech parsing via cortical tracking of hierarchical linguistic structures, including syllable rate. While the properties of neural entrainment have been largely probed with speech stimuli at either normal or artificially accelerated rates, the important case of natural fast speech has been largely overlooked. Using magnetoencephalography, we found that listening to naturally-produced speech was associated with cortico-acoustic coupling, both at normal (∼6 syllables/s) and fast (∼9 syllables/s) rates, with a corresponding shift in peak entrainment frequency. Interestingly, time-compressed sentences did not yield such coupling, despite being generated at the same rate as the natural fast sentences. Additionally, neural activity in right motor cortex exhibited stronger tuning to natural fast rather than to artificially accelerated speech, and showed evidence for stronger phase-coupling with left temporo-parietal and motor areas. These findings are highly relevant for our understanding of the role played by auditory and motor cortex oscillations in the perception of naturally produced speech.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Fala/fisiologia , Adolescente , Adulto , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Adulto Jovem
17.
PLoS Biol ; 18(12): e3000864, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301439

RESUMO

How do we choose a particular action among equally valid alternatives? Nonhuman primate findings have shown that decision-making implicates modulations in unit firing rates and local field potentials (LFPs) across frontal and parietal cortices. Yet the electrophysiological brain mechanisms that underlie free choice in humans remain ill defined. Here, we address this question using rare intracerebral electroencephalography (EEG) recordings in surgical epilepsy patients performing a delayed oculomotor decision task. We find that the temporal dynamics of high-gamma (HG, 60-140 Hz) neural activity in distinct frontal and parietal brain areas robustly discriminate free choice from instructed saccade planning at the level of single trials. Classification analysis was applied to the LFP signals to isolate decision-related activity from sensory and motor planning processes. Compared with instructed saccades, free-choice trials exhibited delayed and longer-lasting HG activity during the delay period. The temporal dynamics of the decision-specific sustained HG activity indexed the unfolding of a deliberation process, rather than memory maintenance. Taken together, these findings provide the first direct electrophysiological evidence in humans for the role of sustained high-frequency neural activation in frontoparietal cortex in mediating the intrinsically driven process of freely choosing among competing behavioral alternatives.


Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Feminino , Lobo Frontal/fisiologia , Ritmo Gama/fisiologia , Humanos , Masculino , Neurônios/fisiologia , Lobo Parietal/fisiologia , Autonomia Pessoal , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Movimentos Sacádicos/fisiologia
18.
PLoS Comput Biol ; 16(10): e1008302, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33119593

RESUMO

Despite being the focus of a thriving field of research, the biological mechanisms that underlie information integration in the brain are not yet fully understood. A theory that has gained a lot of traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous cognitive processes. Current research in the field is not only hampered by the absence of a gold standard for PAC analysis, but also by the computational costs of running exhaustive computations on large and high-dimensional electrophysiological brain signals. In addition, various signal properties and analyses parameters can lead to spurious PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. The advantages of Tensorpac include (1) higher computational efficiency thanks to software design that combines tensor computations and parallel computing, (2) the implementation of all most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any operating system (Linux, OSX and Windows). It can be installed directly via pip or downloaded from Github (https://github.com/EtienneCmb/tensorpac). By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC research, and provide open tools that will accelerate future method development in neuroscience.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/métodos , Fenômenos Eletrofisiológicos/fisiologia , Software , Humanos , Processamento de Sinais Assistido por Computador
19.
Neuroimage ; 219: 117020, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522662

RESUMO

Recent years have witnessed a massive push towards reproducible research in neuroscience. Unfortunately, this endeavor is often challenged by the large diversity of tools used, project-specific custom code and the difficulty to track all user-defined parameters. NeuroPycon is an open-source multi-modal brain data analysis toolkit which provides Python-based template pipelines for advanced multi-processing of MEG, EEG, functional and anatomical MRI data, with a focus on connectivity and graph theoretical analyses. Importantly, it provides shareable parameter files to facilitate replication of all analysis steps. NeuroPycon is based on the NiPype framework which facilitates data analyses by wrapping many commonly-used neuroimaging software tools into a common Python environment. In other words, rather than being a brain imaging software with is own implementation of standard algorithms for brain signal processing, NeuroPycon seamlessly integrates existing packages (coded in python, Matlab or other languages) into a unified python framework. Importantly, thanks to the multi-threaded processing and computational efficiency afforded by NiPype, NeuroPycon provides an easy option for fast parallel processing, which critical when handling large sets of multi-dimensional brain data. Moreover, its flexible design allows users to easily configure analysis pipelines by connecting distinct nodes to each other. Each node can be a Python-wrapped module, a user-defined function or a well-established tool (e.g. MNE-Python for MEG analysis, Radatools for graph theoretical metrics, etc.). Last but not least, the ability to use NeuroPycon parameter files to fully describe any pipeline is an important feature for reproducibility, as they can be shared and used for easy replication by others. The current implementation of NeuroPycon contains two complementary packages: The first, called ephypype, includes pipelines for electrophysiology analysis and a command-line interface for on the fly pipeline creation. Current implementations allow for MEG/EEG data import, pre-processing and cleaning by automatic removal of ocular and cardiac artefacts, in addition to sensor or source-level connectivity analyses. The second package, called graphpype, is designed to investigate functional connectivity via a wide range of graph-theoretical metrics, including modular partitions. The present article describes the philosophy, architecture, and functionalities of the toolkit and provides illustrative examples through interactive notebooks. NeuroPycon is available for download via github (https://github.com/neuropycon) and the two principal packages are documented online (https://neuropycon.github.io/ephypype/index.html, and https://neuropycon.github.io/graphpype/index.html). Future developments include fusion of multi-modal data (eg. MEG and fMRI or intracranial EEG and fMRI). We hope that the release of NeuroPycon will attract many users and new contributors, and facilitate the efforts of our community towards open source tool sharing and development, as well as scientific reproducibility.


Assuntos
Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroimagem/métodos , Software , Algoritmos , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Reprodutibilidade dos Testes
20.
Neuroimage ; 218: 116994, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474082

RESUMO

Visual object recognition seems to occur almost instantaneously. However, not only does it require hundreds of milliseconds of processing, but our eyes also typically fixate the object for hundreds of milliseconds. Consequently, information reaching our eyes at different moments is processed in the brain together. Moreover, information received at different moments during fixation is likely to be processed differently, notably because different features might be selectively attended at different moments. Here, we introduce a novel reverse correlation paradigm that allows us to uncover with millisecond precision the processing time course of specific information received on the retina at specific moments. Using faces as stimuli, we observed that processing at several electrodes and latencies was different depending on the moment at which information was received. Some of these variations were caused by a disruption occurring 160-200 â€‹ms after the face onset, suggesting a role of the N170 ERP component in gating information processing; others hinted at temporal compression and integration mechanisms. Importantly, the observed differences were not explained by simple adaptation or repetition priming, they were modulated by the task, and they were correlated with differences in behavior. These results suggest that top-down routines of information sampling are applied to the continuous visual input, even within a single eye fixation.


Assuntos
Encéfalo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...